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Mean field theory of spherical gravitating systems
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Important gaps remain in our understanding of the thermodynamics and statistical physics of self-gravitating
systems. Using mean field theory, here we investigate the equilibrium properties of several spherically sym-
metric model systems confined in a finite domain consisting of either point masses or rotating mass shells of
different dimension. We establish a direct connection between the spherically symmetric equilibrium states of
a self-gravitating point mass system and a shell model of dimension 3. We construct the equilibrium density
functions by maximizing the entropy subject to the usual constraints of normalization and energy, but we also
take into account the constraint on the sum of the squares of the individual angular momenta, which is also an
integral of motion for these symmetric systems. Two statistical ensembles are introduced that incorporate the
additional constraint. They are used to investigate the possible occurrence of a phase transition as the defining
parameters for each ensemble are altered.

PACS numbegs): 45.05+x, 05.45-a

[. INTRODUCTION are fixed there are no entropy extrema above a critical radius
(R=-0.3355M?/E). When the radius is less than this
The observation that a number of different types of astrovalue, the stability of the extremal solutions was studied by
nomical objects appear to be in thermodynamically relaxedgeveral author¢Katz and Lynden-Bel[5], Katz[6,7], Pad-
states has motivated theorists to understand the thermodyranabhar8,9], and Bavaud10]). They found that, in gen-
namics and statistical physics of self-gravitating systems. Oéral, above a critical density contrdgt(0)/p(R)=709 all
particular note are the globular clusters, consisting of about axtrema are unstable, i.e., they are rotal maxima.
million stars. Besides having relaxed cores, these structurdsynden-Bell and Wood termed this phenomenon tra-
appear to be organized in two distinct classes characterizagbthermal catastrophand it is also referred to as the An-
by radically different density profiles, x-ray production, and tonov instability. In such a system, there is no upper bound
other featureg1]. This suggests that globular clusters mayon the entropy and a state of arbitrarily large entropy can be
exist in different thermodynamic phases. However, in con-constructed from a centrally concentrated density profile by
trast with normal “chemical” systems, which have been suc-shifting more of the mass toward the centeore-halo struc-
cessfully described by thermodynamics at the macroscopitures have higher entropy
level, both the infinite range and short distance singularity of More recently, Kiessling11] has investigated the thermo-
the Newtonian gravitational potential introduce problems indynamic stability of the fullN-body point mass system con-
the statistical theory of phase transitions which make theifined in a spherical box using the canonical ensemble. To
analysis a challenging task. The description of the systemavoid the short range singularity, he regularized the Newton-
can be simplified by going to the Vlasov limit, i.e., by letting ian interaction by softening ifetting the potential approach
the number of particles become large while controlling thea finite value as the origin is closely approachéte showed
total massM and energyE. In this limit the system is de- that in the limit that the softening vanishédewtonian in-
scribed by the single-particle densityx,v,t) in the u (po-  teractior), the canonical equilibrium measure is the superpo-
sition, velocity space, which is employed by most of the sition of Dirac measures at any temperature, meaning that
standard treatments, including the present Wa@ikWe refer  the system is in a collapsed point mass state. We have to
to this reduced description as mean field the@WFT). emphasize that this is the equilibrium solution when the sys-
While MFT avoids the problem of dealing with a&tbody tem is in thermal equilibrium with a heat bath. Also, based
formulation, the difficulties introduced by the singularity and on the results for the finit&l-particle system, with proper
long range of the potential persist. scaling of the particle mass as we take the mean field limit,
In the early 1960s Antonov investigated the equilibriumhe showed that the single-particle density function is propor-
behavior of isolated gravitational systems in MF3]. To  tional to the Dirac distribution. Therefore the system’s equi-
circumvent the problem of escape, he confined the mass tolérium state is the collapsed state in the canonical ensemble.
finite region by introducing a rigid wall. By fixing the total Kiessling’s conclusions do not contradict the earlier work
mass and energy, he showed that maximum entropy solwapplying MFT to the microcanonical ensemiffexed mass
tions forf are spherically symmetric in position and have theand energydescribed above, since no global entropy maxi-
expected Maxwellian velocity dependence. However, henum was found in that case either.
proved that there is nglobal maximum to the entropy: In fact, the pure Newtonian potential is never a correct
while extremal solutions can exist, these are at besal  picture in general because of the finite size of stars and at-
maxima. Antono\ 3], as well as Lynden-Bell and Wodd], = oms. In a nearly hidden Appendix of their paper describing
closely investigated the spherically symmetric system conthe gravothermal catastrophe, it was first pointed out by
fined in a sphere and showed that when the mass and energynden-Bell and Wood that if we modify the singulamr 1/
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Newtonian gravitational potential at the center by introduc-system, and to introduce idealized dynamical “shell” mod-
ing a small minimal distance between the partidié® so- els that also satisfy these constraints. Model gravitating sys-
called hard-sphere modatomplete collapse will be avoided tems consisting of a collection of concentric, infinitesimally
and a global entropy maximum should exXi}. They further  thin spherical shells were first introduced by Her{di8].
conjectured that in this situation a first order phase transitiod hey are useful for investigating the initial stages of evolu-
to a centrally concentrated core-halo configuration would oction of a spherically symmetric self-gravitating system, be-
cur as the system energy is reduced. Several authors demdave the onset of binary formation arising from three-body
strated the existence of a phase transition in special meagffects[1]. They have the further advantages of ease and
field models with a modified gravitational potential. Hertel accuracy of algorithm construction, since it is possible to
and Thirring[12] were the first to show analytically that a analytically solve for the motion of each shell between en-
gravitating system can undergo a first-order phase transitioigounters, eliminating the need for the tedious and slow step-
Although their system is not purely gravitational and has nowise integration of coupled, nonlinear, differential equations
singularity, the pair-interaction potential is purely attractive[19,15,2Q.
and has a fixed value when the pair of particles are in a given In the present work we consider the mean field theory of
subdomain. Also, Lynden-Bell and Lynden-BEIB] showed a system of gravitating point particles moving in three-
the occurrence of a first-order phase transition in their speciaimensional space, as well as that of thin, rotating, spherical
gravitational system, consisting of point particles distributednass shells with angular momentum vectors restricted to
on a shell that cannot shrink into a point m#ismer bound- manifolds of one, two, and three dimensions. We first deter-
ary) or expand to infinity(outer boundary Kiesslinget al. ~ mine conditions for the equilibrium one-particle probability
also applied the hard-sphere mofied#] to study planet for- density functionf(x,p) of a unit mass particléshel) by
mation: They were able to explain the existence of observfinding the entropy extrema with respect to the constraints of
able planets by showing that the mass belonging to the corfd) the normalization(2) the system energ§, and(3) the
densed phase is well below the Jeans ni@$sFor finite  sum of the squares of the angular momentugn We then
N-body systems, a gravitational first-order phase transitioshow that the introduction of the integriap suggests a dif-
was first observed dynamically by Miller and Youngkins ferent type of canonical ensembl&-(y), in addition to the
[15]. They investigated a model consisting of irrotational, extension of the microcanonical ensemie(,). A nonlin-
concentric, spherical mass shells confined between two rigidar differential equation governing the radial density valid
spherical boundaries. The system was studied both theorefier each ensemble is derived for the case of the three-
cally in the mean field limit and numerically bi-body  dimensional point mass system, and for each shell system.
simulations in the microcanonical, canonical, and grand ca¥We then prove that the radial density of the shell system with
nonical ensembles. The analysis for this one-dimensionaingular momentum confined to the Euclidean plane satisfies
system showed that the system undergoes a first-order phatte identical differential equation as the three-dimensional
transition instead of a gravothermal catastrophe. As expectgubint mass system, and we carefully study the equilibrium
in gravitational systems, there were some discrepancies isolutions for this case numerically. The stability of the ex-
the results for different ensembles; however, the numericaremum solutions of each model is investigated in both mi-
N-shell simulations were always in good agreement with thecrocanonical E-L,) and canonicalT-y) ensembles. At first
corresponding mean field predictions. glance it is natural to anticipate that the centrifugal barrier
Much earlier, Eddingto16] determined the form of the associated with the additional constraint will eliminate any
general stationary solution of the Vlasov equation for atendency for complete core collapse without introducing an
spherical system with an anisotropic velocity distributioninner boundary in the system or changing the gravitational
that obeys the Schwarzschild 1d®&]. This model explicitly  potential by other means. We conclude by investigating the
depends on the square of the angular momenittinbut it  possible presence of a phase transition that would remove the

also includes the isothermal pari(r,v)xe fse~"* The  gravothermal catastrophe.
model was presented in 1915, but it may have been forgot-
ten. Later, several phenomenological models were improved Il. THE ENTROPY EXTREMA
by including Eddington’s anisotropic ternKing-Michie
models and other§l7,1,2), giving a better fit to the ob-
served density profiles of globular clusters. However, in The primary goal is to evaluate the equilibrium single-
some cases, a good fit was not obtained for globular clusteysarticle probability density functiori(x,p) that maximizes
with core-halo structures. In other words, a fair number ofthe entropy in the mean field limit. Consider the spherically
globular clusters that have a small and very dense core sugsymmetric isolated point mass system in three space dimen-
rounded by a thin halo structure do not obey these empiricadions with total masM confined in a sphere of radilss We
density-fit models. On the other hand, in addition to the sysehoose units wheré&s=M=b=1 and introduce spherical
tem energy, the sum of the angular momentum squiages coordinatesx=(r,¢,d). The Lagrangian per unit mass of a
=2Ii2 is also an integral of the motion for any isolated single particle moving in the mean field potenti(r) is
spherically symmetric system in the mean field lip2t, and 1 1
should not be ignored. _ T2 2,920 2

The purpose of our work is to present a more general L=art (e Sir9) = (1), @
approach for investigating the equilibrium properties of con-
fined, spherical systems than those mentioned above, whickihere, for a Newtonian pairwise interactiob(r) is given
takes into account both integrals of a spherical gravitatingoy

A. Spherically symmetric point mass systems
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! ! 1
d(r)= Jf[G(r r')+G(r',r)]f(x',p)d3x’'d3p f:eXF{—(Oﬁl)—B(EvZﬂL@ _ £+7 |2
r
(2) (10)
Here . . . :
In order to obtain the radial densip(r), we have to inte-
(r—r") gratef over the other variables. To ensure that the integrals
G(r,r')= - overv, Iy, andl, converge, the following conditions are

necessary3>0 and B/2r>+ y>0 at anyr. Therefore the
second conditon is #/B>-1b?=-1. Using K

and, as usuald (r) denotes the Heaviside step function. The
=exd —(a+1)], we get

Hamiltonian is then

1 1 12 p(r)=f f fd3pdedd
H=Sv+ S+ 5+ O(r 3
2 2r2  2r%sirtd ), ®
27 271' T sind
where p=(v,l,,l5) are the corresponding canonical mo- f f P exp(—,BCD)dcpdﬁ
menta. Our plan is first to determine the entropy extrema, B plr
and then verify whether or not the solutions are local K(2m)%?( B -1
maxima. The entropy of the system[3 8] =————| —+y| e £, (11)
VB \2r?
—f f fIn fd*xd°p, (40 The Poisson equation for the gravitational potential in a
spherical coordinate system,
and the constraints for which we need to find the extremum
are (1) normalization off, (2) energy conservation in the Aq)_ii rzﬁ 4
complete system, an@®) conservation otf_,: Cr2dr dr ) "RV
:f f fd3xd®p (5) wherepv is the volumetric mass density. In some cases, it is
' more convenient to use the line@adia) density instead of

the volume density:

Lz:f f 12fd3xdp, (6) d( ,dd

| 2| =p. (12)
1 1 1
E:fff(EUZ‘FP'z‘FE(D(r)

dr

d®d®p, (7))  Note that becaushl =1 the radial probability density func-
tion and the linear mass density function are the same. Intro-
ducing a new functiont'= 8® and employing Eq(11) we
can rewrite Eq(12) as

where

-1

|2_
e_\I’(r)7

2
24— d dv B
|19+ S|nzﬁ) a(rZW) :p(r):K(Zﬂ_)S/Z\/E(P_l_

Introducing Lagrange multipliera, B, y we have an extre-
mum for the functionalb when

obtaining a closed equation fdr. This in turn can be sim-
plified by introducing constant§ andT’,

0=6(S—a— BE—1vyL,). 8 _
(S—a—BE—1yLy) (8) d [ dv 1 1 o
Taking the first variation of each term in E@), and assert- dr r? dar =C r—2+l“ e ' (13
ing Egs.(5), (7), (6), and(2), we obtain
2
1 1 C=K(2m)%2—>0 (14)
— 2, 2 2 T ’
J’j (|nf+1)+a+,8(zv +2r2| +d(r) |+l \/E
x ofd3xd® 2
std3xd®p, F:Fy>_l'
from which finally
This is the final form of the differential equation for the
1 B scaled potential, which we will solve using numerical
- _ ——pl =2 | = 2 '
0=-(nf+1)-a 'B(zv +<I>(r)> 2r2+7 I methods. Finally, we can evaluai® L,, and S in terms

(9) of the Lagrange multipliers, the densjiyr), and the poten-
tial ®(r). After integrating Egs.(7), (6), and (4), we
Thus the one-particle probability density functidDF) is obtain
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5 b n
S=a+—+,8j pddr, (15 |2
’ ’ E—fff L 2+3k2l k+1<I> dn*ixdntl
1 = SVt 2 > (r) X p.
b - 22
L= ﬁzw) dr, 16 “
o \2r The solution for the variational problem can be obtained eas-
ily, and the one-particle density function is now
E ! +fb ! +<D d a7 1
=— p| ———+ = |dr.
2B Jo"\B+2y? 2 f:exq—(a+1)]exp{—ﬁ(§v2+q>

B. Shell systems F{
xXexpg —

In this section we consider the system of spherically sym-
metric, infinitesimally thin, mass shells confined in a sphere
with radiusb. We can define three basic types of the modelTherefore the radial mass density function is
with dimensionsd=2,3,4. The one-dimensionald&1)
nonrotating shell system is discussed[i5]. In the d=2 (r):f f fd+ Lpgn
case, every shell rotates about a fixed axis. Wther8, the P ¢
rotational axis of every shell is in a fixed plane, whie
=4 means that every shell can rotate about any arbitrary —K(2m)@n+ DRI _
axis. Therefore we usd—1 angles as coordinates. Let us \/E
consider these systems in the mean field limit again using
units where M=G=b=1. With the potential discussed (24)

abpve[Eq. (2)], _the Lagra_ng|an ano_l the Hamiltonian of a From the Poisson equation, again usiig- B®, we find
unit mass shell in a spherical coordinate system are, respec-

2 |§]. (23

-n/2

exp(— BD).

a2 (3
%,
4r?

tively, d dw
2" | = (2n+1)/2__n/2
1 Lo | dr(r dr) K(2) T \/E
L: §r2+ 5[’2'(21 (pk—CD(I’), (18) 3B —ni2
X|—+vy exp(— W), (25
n ar
2
1 3 gl I which can be simplified to
H=sv2+ +d(r), (19
2 4 2 -nf2
d/[ ,dV¥ 1 v
a r W =C —2+F e ( ), (26)
where g, (k=1,2,3) are the angles aroumdy, andz, thel, r
are thex,y,z components of the angular momentum per unit
mass, and we have used the fact that the moment of inertia of 20N+ 12

- 3n+1)/2
a shell with unit mass is (2/8J. In the equations above, we C= (38)"2 7 B>0, (27)
usen=d—1, which is the number of degrees of freedom
coming only from rotation. This is a generalization of the

previous model, and so is the method to find the equilibrium = 4_y> —1. (29)
PDF f(x,p). As in the previous section, in order to get the 3B

equilibrium solutions first we have to find the extremum of ) , .

the entropy: Comparing the results(26) for the three-dimensional

shell system 1i=2) to that of a three-dimensional point
mass systen{13), we can see that these two systems are
S:_f ffmfd”‘*'lxd”‘*'lp (200  equivalent in so far as Eq$13) and (26) have the same
form.
. _ . It is useful to evaluateS,L,, and E in terms of the
with respect to the three constraints of normalizatinand  |agrange multipliersp(r), and ®(r). The integration of

L, Egs.(20), (21), and(22) yields
n+3 b
1:f f fd"* xd" " 1p, S=a+T+,6’f pddr, (29
0
n neo (38 |7t
LzZJ f f(gllﬁ)d“*lxdmlp, (21) |—2=§fop a2 Y oan (30)
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1 b (3n 1 ® by refining the partitior(increasingn). The problem is then
E=—+ j ———F + = |dr. 31 shifted to finding the extrema df:
23 op( 8 (3/4) g+ yr? 2 (Y g

9,F(x,8)=0. (33

Il. T-y ENSEMBLE
) ) ] ) Denote the extremum solutions of the problem ky

In the previous sections we derived expressions for the:{xa(s)} wherea.b=1. ... N labels different extremal so-
entropy extremum solutions for our model systems in term§sions. Assume that the first and second derivatives afe
.Of the local radlalldensny. A third Lagra}nge multlphen/vas_ continuous inx ands, andX,, is continuous as well. Assume
introduced to satisfy the extra constraint lop Thus speci- also that the matrix(—a-&-é) has a nondegenerate eigen-
fying E andL, (and, of courseM) defines the analog to the LA 1deg g

ing 2 ’ g0 Ie \alue spectrum, which we may consider to be ordered:
microcanonical ensemble for these systems. Alternatlvelyk (s)<k (s)<, <k..(S)< and  further  that

v/ 7 H la 2a e nal ]

by fixing / and y, we can define the analog of the canonlcal(_ d9;9;F), is diagonal (We can always transform it into that

ensemble, in whicle andL, are not fixed, but their average form.) Let us evaluaté® at the extremum pointg=X,(s)
is determined by3 and y, where y=9S/dL,. We call this wher.e P a

the T-y ensemble. It can be modeled by imagining that the
system is in contact with a heat bath with consféraind also
an|? bath at constany. Thel? bath corresponds to the fact
that we allow somé? exchange between the system and theT
bath. Since the system is spherically symmetric in position
while the system can also exchange angular momentum witty
the bath, its vector average will vanish. As an example, we

9F(X,,8)=0. (34)

hen, as the parametsiis varied, on the extremum labeled

can imagine a globular cluster that is embedded in some 0=ia»F(X s)

large spherically symmetric stellar neighborhood with an iso- ds™ ¥

tropic velocity distribution. The mean angular momentum of w

both system and bath is zero, and ohfyand energy ex- _ i
: =(9s0iF)at 3;0;F) X

change can occuffor the moment, we do not take into ac- (959iF)a 121 (93iF)aXa

count the possibility that particles can escape from the clus-

ten). =(959iF)a=kia($) X, (35
In performing calculations it is more convenient to use the
T-vy ensemble than th&-L, microcanonical ensemble be- o (9s0iF),
cause in the latter we have to find the Lagrange multipliers Iﬁ:k-—(s)' (36
1a

from the givenE andL,. As can be seen from Eg§l5),
(16), and(17) this is a nontrivial and laborious task. In this . . .

ensemble the relevant thermodynamic potential is an exter;clj:he. stgbmt);':of the_ Ex’;zemum is determined by the second
sion of the Helmholz free energy, erivative ofF,(s) =F(Xa.,s),

1 n ” (9s9;F)?
.. i si
s 2y, (32) Fa= (95F)at 2, (3i0F)aXe= (3F)at 2 — —

TR RSB

i=1 kia

(37)
and equilibrium states, if they exist, minimize
The stability will change only when one of the, changes
sign, and a change in stability occurs only at bifurcation
or limit points [6,7]. Therefore we have to investigate

From the variational problem, we only know the extre- the dependence ¢f, onsin order to decide how the stabil-
mum solutions. In order to separate the unstable solutiongy changes at aa-b bifurcation or limit point. If we look at

Poincares linear series of equilibria. Following Kat5,7] ; o . N
. o ign from positive to negative, at that point F
we can generalize the method to the case of a funcnonaﬁg P 9 ’ P Qmo a

From now on, we discuss the generalized version of the= +2 and similarly, from the otheb branch, lim s Fy
method which has to be applied to our models to determine= — oo,

whether an extremum solution is stable or unstable. We out- Going back to our original problem, we have to apply the
line the method below. Let us assume that we want to findnethod to our model systems in both tBeL, and T-y

the maximum of the functiondt™ (f,s) which depends para- ensembles. The only difficulty is that the method discussed
metrically ons. The functionf:{) —R, where() is a compact above allows us to include only systems with one control
domainQ € R3, and the local maximum of the functional is parametes. In our case, we are free to fix eithEror L in

the stable solution. Suppose we partit@nand consider the the E-L, ensemble angB or y in the T-y ensemble and
vectorx e R" with elementsx;=f(y;) (y; € is not a coor-  regard the other as the control parameter. Afterwards, we can
dinate but an indexed element@). Instead of dealing with change the previously fixed parameter and apply the method
the functionalF*, we can construct a functioR:R"—R  again for a wide range of parameter sets. In Ed, en-
such that~(x,s)~F*(f,s). The accuracy can be controlled semble a natural choice of parameterBswith one fixed

IV. STABILITY
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value ofL,, as the entropy has to be a local maximum if thethree-dimensional point mass system, or the three types of
system is in a locally stable state. If we are at the extremunshell system. Generally, all of the differential equations can

solution points, be written in the form
ds 4s dy 1 e
- - _—= Z_cl= ()
dE E (38) Gl e, (44)

For a different value ofL,, we can clearly see which 4w
branch of the extremum solutions is unstable. To obtain a el l
2!

complete description we can use the same methds i ro
fixed:

-

whereV = B® andn=d—1 (as aboved is the dimension of
. ds 4s the system Of course, the parametel's>—1 andC>0 are
S= daL, L, v (39 different case by case. But it is quite interesting to mention
that these systems behave similarly, regardless of whether
In the T-y ensemble, first consider the case where weyfix we deal with a point mass system or a shell system, as long
and we are looking for the maximum of the functional as the dimensions are the same. This is no longer a surprise

— BF. On a branch of the extremum solutions, if we look back at the Hamiltonians. But the similarity does
also mean that, for example, a three-dimensional point mass
dF 0E S 19SJE 1 9dS L, vy vy dL, system is equivalent to a three-dimensional shell system as

dag ﬁ“L g2 BIEIB Bil, B g2 2t B op  far as the one-particle density function and the stability of
solutions are concerned. Also, another advantage of the

(40 analogy is that we can dynamically model a three-
Using 9S/9E= B and 4S/dL,= vy, we easily find dimensional point mass system with a three-dimensional
shell system. Both systems should show the same equilib-
dF S vy d(BF) dF rium properties in the mean field limit. Of course, we have to
dg~ 52 pririe B F+ @) =-E reassign the moment of inertia of a shell to a different value
B~ B (41) in order to getexactlythe same Hamiltonian in both cases.

The above system of equations should be solved with the
If we construct the stable branches for several valueg,of following boundary conditions:

we can build up a general picture of the stability of the ex- y(0)=0 (45)
tremum solutions. We can apply the method for the case of a '
fixed g as well. The extremum solutions are stable when T(1)=—g.

— BF is maximum:
Unfortunately, there are two things that make finding the
d_F: E_ 1 5_SE_ i ‘9_8 &_|-2+ EL n Y ‘9_|-2 solutions more difficult. First, Eq44) has a singularity at
dy dy BIEIy Bi,dy B 2 By’ r=0 and, secondly, the existence and uniqueness of the so-
(42 lution are questionable for any giv&h g, andl". We cannot

simply setC andI" to satisfy our constraints of specifiég

d_F _ EL andL, because we do not have explicit formsandL, in
dy B % terms ofC andI': the constraints are functionals efand®.
To eliminate this problem we can change our boundary
d(BF) condition problem to an initial value problem because, in
T T dy =—La. (43 the latter case, we can ensure the existence and uniqueness

of our solution for anyC>0 andI'>—1. Therefore we

From the results derived above we have a tool to separatehoose
the unstable solutions that is easy to apply. In the microca-
nonical (E-L,) description, we have to inspect the extremum y(0)=0, (46)
solutions in theB-E plane for several fixed values &f, or ¥(0)=W
in the y-L, plane for several fixed values & However, 0
in the T-y ensemble, we have to inspect the extremumynhere Woe(—,+), and we are able to construct the
solutions in the {-E)-B plane for fixedy values, or we  solution around =0 in the form of a power series df and
have to consider the extremum solutions in thelG)-y  y. From the numerical point of view, we should take
plane for the case of fixegs. Either way, as we will the power series off andy in r; (a sufficiently small
show below, we can generalize the approach to two paramzdius aroundr =0), and then continue the integration of
eters. Eq. (44) numerically from that point with the new initial

values
V. NUMERICAL METHOD

, . y(r1)=You, (47)
In order to find the entropy extremum solutions for the
systems above, we have to solve Efj3) or (26), for the W(ry)=Vo,.
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FIG. 1. The extremal solution curves at different valued of FIG. 3. The relative volume density profiles of the three ex-

=2vIp (from the top to the bottoni’=—0.9,-0.5,0,2,5.) Note  {remal solutions in the case of the isothermal sphére 0,6=2).
that each curve has an upper boysdI), and no extrema can be  only the least concentrated solution, which has the highest value of
found with B> B(T'). Also note that over a certain range 6f is stable. The lower the value df,, the more condensed and

multiple solutions are present. However, of those multiplenstaple the solutions become. The unstable solutions are charac-
solutions, only those are stable that have the highest value gfyizeq by a pronounced core-halo structure.

¥, (see Fig. 2 beloyv The asymptotic cases aMEy,— — [8
— Bo and py(r)ec1/r?] and¥y—oe, which is the high temperature very similar, so we will use the point mass system to dem-
limit. onstrate their general features. As we can see, the solutions
are bounded and, as a comparison, the results for the familiar
Although the solution we get from E6) is unique, it does isothermal sphere modell'&0) [21,8] are presented as
not satisfy both Eq(45) and normalization. Looking at Eq. well. Examination of Fig. 1 clearly demonstrates the exis-
(44), we can see that we get all physical solutions with onlytence of an upper bound(I'), which means that below a
one fixedC=C, for the initial value problem, since chang- critical temperature there is no extremum solution at fiked

ing the value ofC is equivalent to shifting the solutiony, [N fact, this can be proved rigorously from the differential
by a constant. Therefore we can find all of the physicallyequations[23]. We can also see from the graph that
relevant solutions by fixing the value & and varying¥,  =dB./dI'<0 and that, wheng— Bo=Ilimy . _..B(¥o),
andI'. We also have to notice that, since we uBe=B®, the number of solutions goes to infinity.

from the Poisson equation, the rhs of E44) is normalized In Fig. 2 we show that three solutions occur for a particu-

to B, so we can get the inverse temperature by integratindar value of 3 (=2.7). At this point we do notknow which of
Eq. (44), which is simplyy(1). In practice, we used the them, if any, are stable. In Fig. 3 we plot the volume density
Bulirsch-Stoer methof22] to integrate the coupled, nonlin- profiles of these solutions normalized to the central density.
ear, differential equations frony; and Bode’s five-point As we can see, solutions represented by sméflgare more

method[22] to evaluate integrals. Relative errors were con-@nd more concentrated at the center. As a comparison, we
trolled to within 10712 also give the density profiles of the well known isothermal

sphere ['=0). There is some difference in the shape of the
density profiles in the case whele£0 but, in general, the
volume density profile is singular aB,— —o0, and has the

In Fig. 1 we show plots of3 vs ¥, for the allowed ex- asymptotic solutiop, = 1/4r?. Note that the linear density
tremal solutions corresponding to five particular value¥.of is p=1 in this asymptotic case. In order to see the difference
The numerical results for the other models are qualitativelybetween density profiles of the isothermal sphéie-Q) and

VI. NUMERICAL RESULTS

25
2 4
s 15 |
Q
kS 1 _//
—
' ]
0
0 0.2 0.4 0.6 0.8 1
0.5 r
0 FIG. 4. In order to show the effect that a nonzero valug bis
-20 -15 -10 -5 0 5 on the density, we plot the relative volume mass density profiles of
¥, the locally stable high temperature asymptotic solutioig-G o)

at different values ofI" (from the top to the bottom] =
FIG. 2. The extremal solutions fér= —0.74. For3=2.7, three  —0.5,0,2,5). While the isothermal sphere has a constant density in
extremum solutions are present, but only the one with the largedhis limit, nevertheless the models with# 0 have different behav-
V¥, is stable. For comparison, also see Fig. 8 below. ior due to the nonzere.
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-0.4 -0.3 -0.2 -0.1 0 0.1 0.2

E FIG. 6. They vs L, plot of the extremum solutions wheb=

—0.3 (E-L, ensemblg Above a critical value of,, there are no
extrema. In this case, the gravothermal catastrophe is also present
according to the stability investigations, and only the first piece of
the spiraling curve that starts lBj=0 and ends at the critical value

of L, defined above represents the stable solutions.

FIG. 5. Thep vs E plot of the extremum solutions whdn,
=0.25 (E-L, ensemblg As seen, there are no solutions below a
critical value of the energyE.(L,), and multiple solutions are
present for a certain range & Based on the stability investiga-
tions, only the upper envelope of the complete spiraling cdtve
# 0 represents the stable solutions. Other pieces are unstabie
eigenvalues become negatives we go to the center of the spiral. stable because additional eigenvalues become negative. In

For comparison, see Fig. 7 below. the opposite case, when we fix (Fig. 6), we can see that
above a critical value ok, there is no extremum solution.
The corresponding functionS(E) and S(L,) are plotted in
Fig. 7. We see that the entropy is monotonic above a critical
energy in the stable region of the extremal solutions.

For theT-y ensemble, the results are presented in Figs. 8
and 9. First of all, in the case of fixeg, we have to take a

the others, we plot the high temperature solutidfig. 4).
These are the— o asymptotic solutions wher—0. If
I'>0 the relative volume density profiles curve down, but
whenI'<0 the profiles curve up, indicating that, if we have

an 12 reservoir, at higher radius the density profile should : .
change from the horr?ogeneous density prof)illep. close look at the solutions in the-(E)-8 graph. Only the

In order to show how thé., constraint affects the shape first branch of the solutions is locally stable up to a critical

of the density profiles, in Fig. 4 we plot the relative volume vValue of 3, say B, because { E)4(Bc) ==, and there is no
density profiles for a high temperature. As we can see in théxtremum for> .. For giveny<0, the existence condi-
figure, whenl" #0 the density profiles are no longer uniform tion now reads3>2|y], inducing a positive lower bound on
and, depending on the sign bf the density is either increas- 8. As & comparison, we selected the valueloin Fig. 2

ing (I'<0) or decreasingI{>0), while in the standard case corresponding to Fig. 8; as we wind along the curve to a
(I'=0) in the limit of high temperature the density is uni- particularg value, the extremum §0Iutlons are represented by
form. We can understand this behavior if we recognize thaft more concentrated set of density profiles. Another result of
in the limit B—0 gravity can be neglected. Consider Eq.t_he stability investigations is that in Fig. 1_, only those solu-
(10) wheny+0. Since the kinetic energy contribution is still tions are locally stable which are to the right of the largest
Maxwellian, the probability of finding a particle with large Maximum of thep(W,) curves. The correspondingF can
is smaller whenl'>0(y>0), which means fewer particles be seen in Fig. 10. In the st_able region, it is a monotonic
will occupy larger radii. From the physical point of view, for function, and ther_efore there is no sign of a phase transition.
a relatively largelL,, more particles should concentrate at The same holds in th&-L, ensemble as can be seen by
larger radii in order to maintain the large value, while, for
relatively smallL,, fewer particles should settle at large ra-
dii in order to balance the centrifugal forces. For the case
whereI'<<0 the situation is the opposite, and the density
profile should increase with increasing radius. Of course,
while we cannot use this argument for finite temperatures,
the origin of the difference in the density profiles whEn
#0 is this effect. At finite temperature the tendency persists — 38

4.6

4.4

4.2

” 4

but the behavior is not guaranteed.

In Figs. 5 and 6, the stability properties are presented 36
according to the previously discussed Poindarear series 3.4
of equilibria with fixedL, andE in the E-L, ensemble. As 04 -03 02 -0 0 0.1 0.2

we can see, the gravothermal catastrophe holds foEtheg E
ensemble as well. In Fig. 5, below a critical energy there is

no extremal solutiorthere the radius is fixed, not the energy _ FIG- 7. The entropy vs energy curve for the casd.gf0.25

. . . (E-L, ensemblg (Also see Fig. 5.The stable branch of the solu-
as in[4]). Also, at the same poin{3,(Ec)=2 jumps to tions in Fig. 5 can be identified as the highest entropy curve seg-

Bu(Ec) = — . (We follow the spiral in the counterclockwise ment in theS vs E plot, which exactly ends .. Note that this
direction) Thus only the first brancha, the upper envelope segment is also a monotonic function Bf which means no phase
of Fig. 5, is stable. The other branches are increasingly uniransition is present in the system.
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FIG. 8. The E) vs 8 plot of the extremum solutions in the FIG. 10. (—F) vs B plot at fixedy=—1, whereF is the ther-
T-v ensemble aty=—1. There are no extrema above the critical modynamic potential in thd-y ensemble. From Fig. 8, we can
B:(¥), and only the first branch of the extrema are stable. Thaclearly identify which piece of the curve represents the stable solu-
piece of the spiraling curve which represents the stable solutionions; it is the first piece, starting @=2 and ending aB... There
starts ai3=2 and ends aB. (gravothermal catastrophe in they is no sign of a phase transition because in the stable region
ensemblg From Fig. 2, we can clearly see that only the least con-—F(8) is monotonic. Note that the stable solutions have the mini-
densed density profiles represent the stable solutions. For comparial F.
son, see Fig. 10 below.

inspecting the entropy curves in Fig. 7. The results for fixedprofile, it is equivalent to the spherically symmetric point

B are shown in Fig. 9. The stable region of extremum soluimass system. Our description is more general than the stan-

tions becomes unstable @t and aty> v, there are no ex- dard treatment of the isothermal sph¢2d] since, in addi-

trema. The free energy behaves similarly to the case of fixetlon to the energy, we take into accoury, the sum of the

v: it is monotonic and there is no phase transition. squares of the individual angular momenta, which is con-
served in the mean field limit for spherically symmetric sys-
tems. In this type of microcanonical descriptioB-{, en-

VII. CONCLUSION semble we evaluated the “equilibrium” one-particle

probability density function for each type of system by find-

The main purpose of this work is to study the equilibrium ing the extrema of the entropy. The resulting PDF’s turned
thermodynamics of spherically symmetric self-gravitating©Ut to be similar to Eddington’s anisotropic density function
systems in the mean field limit. We investigated both thd 16]. Therefore thg density profiles obtaiped .here also differ
spherically symmetric point mass system and shell system§om those of the isothermal sphere which, in our formula-
of differing dimension confined in a sphere. These systemiOn, iS the special casg=0. Near the system center, the
are related to each other both in the form of their Hamil-density profiles are similar to those of the isothermal sphere.
tonian and their equilibrium states. Furthermore, thee However, as the outer boundary is approached, depending on

dimensional shell system has the interesting and potentiall € value ofl’, deviations can become large, increasing or

. S .. decreasing depending on the signlaf The physics behind
useful property that, with regard to the equilibrium dens'tythis behlav%or i.f simlplg: if the sylsgtem is SplE)I’I}:J[; correslpond—

ing to negativd’, the outer density increases. If, on the other
hand, the radial kinetic energy dominates the rotational en-
ergy,I'- >0 and the outer density decreases.

01 - - In addition to the microcanonical ensemble, the Lagrange
015 | multiplier y, which arose from the constraint &3, yielded
0.2 : o a canonical ensembler{y) that corresponds to the system
0.25 being embedded in a heat bath at temperafusnd anl?
S 03 reservoir aty. But this analogy is correct only if the system
) 035 /7 is, at least, in a local equilibrium state, and this issue dem-
04 . onstrates the importance of checking the stability prgperties
0.45 of the extremum solutions. The method known as Poirisare
05 linear series of equilibria proved adequate to analyze the sta-
05 0 05 1 15 bility of the extremum solution in both ensembles with a

little extra effort. Using it, we showed that only certain types
of solutions are locally stable, and others are saddle points.

FIG. 9. The (-L,) vs v plot of the extremum solutions @ !N other words, the gravothermal catastrophe is also present
=2 (T-y ensemblg There are no extrema above the critical value In both theE-L, andT-y ensembles, which means that there
v<(B) and only the first branch of the extrema is stable. The curvdS N0 phase transition in our spherical mean-field models,
segment that represents the stable solutions staris=at 1 and  although one was expected to be present because df,the
ends aty. . In other words, the gravothermal catastrophe is presentconstraint.

Y
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From their description of the gravothermal catastrophe ishell systems should prove especially useful since they avoid
is easy to imagine that Lynden-Bell and Wop4] had in  the complication arising from the formation of tight binaries
mind a dynamical process in which mass was transferref?].
from the halo to a concentrated central core. However, their
approach was confined to a comparison of stationary states. ACKNOWLEDGMENTS
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