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Mean field theory of spherical gravitating systems

Peter J. Klinko and Bruce N. Miller
Department of Physics, Texas Christian University, Fort Worth, Texas 76129

~Received 1 March 2000!

Important gaps remain in our understanding of the thermodynamics and statistical physics of self-gravitating
systems. Using mean field theory, here we investigate the equilibrium properties of several spherically sym-
metric model systems confined in a finite domain consisting of either point masses or rotating mass shells of
different dimension. We establish a direct connection between the spherically symmetric equilibrium states of
a self-gravitating point mass system and a shell model of dimension 3. We construct the equilibrium density
functions by maximizing the entropy subject to the usual constraints of normalization and energy, but we also
take into account the constraint on the sum of the squares of the individual angular momenta, which is also an
integral of motion for these symmetric systems. Two statistical ensembles are introduced that incorporate the
additional constraint. They are used to investigate the possible occurrence of a phase transition as the defining
parameters for each ensemble are altered.

PACS number~s!: 45.05.1x, 05.45.2a
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I. INTRODUCTION

The observation that a number of different types of as
nomical objects appear to be in thermodynamically rela
states has motivated theorists to understand the therm
namics and statistical physics of self-gravitating systems
particular note are the globular clusters, consisting of abo
million stars. Besides having relaxed cores, these struct
appear to be organized in two distinct classes character
by radically different density profiles, x-ray production, a
other features@1#. This suggests that globular clusters m
exist in different thermodynamic phases. However, in c
trast with normal ‘‘chemical’’ systems, which have been su
cessfully described by thermodynamics at the macrosc
level, both the infinite range and short distance singularity
the Newtonian gravitational potential introduce problems
the statistical theory of phase transitions which make th
analysis a challenging task. The description of the sys
can be simplified by going to the Vlasov limit, i.e., by lettin
the number of particles become large while controlling
total massM and energyE. In this limit the system is de-
scribed by the single-particle densityf (x,v,t) in the m ~po-
sition, velocity! space, which is employed by most of th
standard treatments, including the present work@2#. We refer
to this reduced description as mean field theory~MFT!.
While MFT avoids the problem of dealing with anN-body
formulation, the difficulties introduced by the singularity an
long range of the potential persist.

In the early 1960s Antonov investigated the equilibriu
behavior of isolated gravitational systems in MFT@3#. To
circumvent the problem of escape, he confined the mass
finite region by introducing a rigid wall. By fixing the tota
mass and energy, he showed that maximum entropy s
tions for f are spherically symmetric in position and have t
expected Maxwellian velocity dependence. However,
proved that there is noglobal maximum to the entropy
while extremal solutions can exist, these are at bestlocal
maxima. Antonov@3#, as well as Lynden-Bell and Wood@4#,
closely investigated the spherically symmetric system c
fined in a sphere and showed that when the mass and en
PRE 621063-651X/2000/62~4!/5783~10!/$15.00
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are fixed there are no entropy extrema above a critical ra
(R*20.335GM2/E). When the radius is less than th
value, the stability of the extremal solutions was studied
several authors~Katz and Lynden-Bell@5#, Katz @6,7#, Pad-
manabhan@8,9#, and Bavaud@10#!. They found that, in gen-
eral, above a critical density contrast@r(0)/r(R)*709# all
extrema are unstable, i.e., they are notlocal maxima.
Lynden-Bell and Wood termed this phenomenon thegra-
vothermal catastropheand it is also referred to as the An
tonov instability. In such a system, there is no upper bou
on the entropy and a state of arbitrarily large entropy can
constructed from a centrally concentrated density profile
shifting more of the mass toward the center~core-halo struc-
tures have higher entropy!.

More recently, Kiessling@11# has investigated the thermo
dynamic stability of the fullN-body point mass system con
fined in a spherical box using the canonical ensemble.
avoid the short range singularity, he regularized the Newt
ian interaction by softening it~letting the potential approach
a finite value as the origin is closely approached!. He showed
that in the limit that the softening vanishes~Newtonian in-
teraction!, the canonical equilibrium measure is the superp
sition of Dirac measures at any temperature, meaning
the system is in a collapsed point mass state. We hav
emphasize that this is the equilibrium solution when the s
tem is in thermal equilibrium with a heat bath. Also, bas
on the results for the finiteN-particle system, with prope
scaling of the particle mass as we take the mean field lim
he showed that the single-particle density function is prop
tional to the Dirac distribution. Therefore the system’s eq
librium state is the collapsed state in the canonical ensem
Kiessling’s conclusions do not contradict the earlier wo
applying MFT to the microcanonical ensemble~fixed mass
and energy! described above, since no global entropy ma
mum was found in that case either.

In fact, the pure Newtonian potential is never a corre
picture in general because of the finite size of stars and
oms. In a nearly hidden Appendix of their paper describ
the gravothermal catastrophe, it was first pointed out
Lynden-Bell and Wood that if we modify the singular 1r
5783 ©2000 The American Physical Society
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5784 PRE 62PETER J. KLINKO AND BRUCE N. MILLER
Newtonian gravitational potential at the center by introdu
ing a small minimal distance between the particles~the so-
called hard-sphere model! complete collapse will be avoide
and a global entropy maximum should exist@4#. They further
conjectured that in this situation a first order phase transi
to a centrally concentrated core-halo configuration would
cur as the system energy is reduced. Several authors de
strated the existence of a phase transition in special m
field models with a modified gravitational potential. Hert
and Thirring @12# were the first to show analytically that
gravitating system can undergo a first-order phase transi
Although their system is not purely gravitational and has
singularity, the pair-interaction potential is purely attracti
and has a fixed value when the pair of particles are in a gi
subdomain. Also, Lynden-Bell and Lynden-Bell@13# showed
the occurrence of a first-order phase transition in their spe
gravitational system, consisting of point particles distribu
on a shell that cannot shrink into a point mass~inner bound-
ary! or expand to infinity~outer boundary!. Kiesslinget al.
also applied the hard-sphere model@14# to study planet for-
mation: They were able to explain the existence of obse
able planets by showing that the mass belonging to the c
densed phase is well below the Jeans mass@2#. For finite
N-body systems, a gravitational first-order phase transi
was first observed dynamically by Miller and Youngkin
@15#. They investigated a model consisting of irrotation
concentric, spherical mass shells confined between two r
spherical boundaries. The system was studied both theo
cally in the mean field limit and numerically byN-body
simulations in the microcanonical, canonical, and grand
nonical ensembles. The analysis for this one-dimensio
system showed that the system undergoes a first-order p
transition instead of a gravothermal catastrophe. As expe
in gravitational systems, there were some discrepancie
the results for different ensembles; however, the numer
N-shell simulations were always in good agreement with
corresponding mean field predictions.

Much earlier, Eddington@16# determined the form of the
general stationary solution of the Vlasov equation for
spherical system with an anisotropic velocity distributi
that obeys the Schwarzschild law@2#. This model explicitly
depends on the square of the angular momentuml 2, but it
also includes the isothermal part:f (r ,v)}e2bee2g l 2. The
model was presented in 1915, but it may have been for
ten. Later, several phenomenological models were impro
by including Eddington’s anisotropic term~King-Michie
models and others@17,1,2#!, giving a better fit to the ob-
served density profiles of globular clusters. However,
some cases, a good fit was not obtained for globular clus
with core-halo structures. In other words, a fair number
globular clusters that have a small and very dense core
rounded by a thin halo structure do not obey these empir
density-fit models. On the other hand, in addition to the s
tem energy, the sum of the angular momentum squaresL2

5( l i
2 is also an integral of the motion for any isolate

spherically symmetric system in the mean field limit@2#, and
should not be ignored.

The purpose of our work is to present a more gene
approach for investigating the equilibrium properties of co
fined, spherical systems than those mentioned above, w
takes into account both integrals of a spherical gravitat
-
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system, and to introduce idealized dynamical ‘‘shell’’ mo
els that also satisfy these constraints. Model gravitating s
tems consisting of a collection of concentric, infinitesima
thin spherical shells were first introduced by Henon@18#.
They are useful for investigating the initial stages of evo
tion of a spherically symmetric self-gravitating system, b
fore the onset of binary formation arising from three-bo
effects @1#. They have the further advantages of ease a
accuracy of algorithm construction, since it is possible
analytically solve for the motion of each shell between e
counters, eliminating the need for the tedious and slow s
wise integration of coupled, nonlinear, differential equatio
@19,15,20#.

In the present work we consider the mean field theory
a system of gravitating point particles moving in thre
dimensional space, as well as that of thin, rotating, spher
mass shells with angular momentum vectors restricted
manifolds of one, two, and three dimensions. We first de
mine conditions for the equilibrium one-particle probabili
density functionf (x,p) of a unit mass particle~shell! by
finding the entropy extrema with respect to the constraints
~1! the normalization,~2! the system energyE, and ~3! the
sum of the squares of the angular momentumL2. We then
show that the introduction of the integralL2 suggests a dif-
ferent type of canonical ensemble (T-g), in addition to the
extension of the microcanonical ensemble (E-L2). A nonlin-
ear differential equation governing the radial density va
for each ensemble is derived for the case of the thr
dimensional point mass system, and for each shell sys
We then prove that the radial density of the shell system w
angular momentum confined to the Euclidean plane satis
the identical differential equation as the three-dimensio
point mass system, and we carefully study the equilibri
solutions for this case numerically. The stability of the e
tremum solutions of each model is investigated in both m
crocanonical (E-L2) and canonical (T-g) ensembles. At first
glance it is natural to anticipate that the centrifugal barr
associated with the additional constraint will eliminate a
tendency for complete core collapse without introducing
inner boundary in the system or changing the gravitatio
potential by other means. We conclude by investigating
possible presence of a phase transition that would remove
gravothermal catastrophe.

II. THE ENTROPY EXTREMA

A. Spherically symmetric point mass systems

The primary goal is to evaluate the equilibrium singl
particle probability density functionf (x,p) that maximizes
the entropy in the mean field limit. Consider the spherica
symmetric isolated point mass system in three space dim
sions with total massM confined in a sphere of radiusb. We
choose units whereG5M5b51 and introduce spherica
coordinatesx5(r ,w,q). The Lagrangian per unit mass of
single particle moving in the mean field potentialF(r ) is

L5
1

2
ṙ 21

1

2
r 2~q̇21ẇ2sin2q!2F~r !, ~1!

where, for a Newtonian pairwise interaction,F(r ) is given
by



he

o-
a

ca

um
e

als
e

a

t is

-
tro-

e
al

PRE 62 5785MEAN FIELD THEORY OF SPHERICAL GRAVITATING . . .
F~r !52E E @G~r ,r 8!1G~r 8,r !# f ~x8,p8!d3x8d3p8.

~2!

Here

G~r ,r 8!5
Q~r 2r 8!

r

and, as usual,Q(r ) denotes the Heaviside step function. T
Hamiltonian is then

H5
1

2
v21

l q
2

2r 2
1

l w
2

2r 2sin2q
1F~r !, ~3!

where p5(v,l w ,l q) are the corresponding canonical m
menta. Our plan is first to determine the entropy extrem
and then verify whether or not the solutions are lo
maxima. The entropy of the system is@2,8#

S52E E f ln f d3xd3p, ~4!

and the constraints for which we need to find the extrem
are ~1! normalization of f, ~2! energy conservation in th
complete system, and~3! conservation ofL2:

15E E f d3xd3p, ~5!

L25E E l 2f d3xd3p, ~6!

E5E E f S 1

2
v21

1

2r 2
l 21

1

2
F~r !D d3xd3p, ~7!

where

l 25S l q
2 1

l w
2

sin2q
D .

Introducing Lagrange multipliersa, b, g we have an extre-
mum for the functionalS when

05d~S2a2bE2gL2!. ~8!

Taking the first variation of each term in Eq.~8!, and assert-
ing Eqs.~5!, ~7!, ~6!, and~2!, we obtain

052E E F ~ ln f 11!1a1bS 1

2
v21

1

2r 2
l 21F~r !D 1g l 2G

3d f d3xd3p,

from which finally

052~ ln f 11!2a2bS 1

2
v21F~r ! D2S b

2r 2
1g D l 2.

~9!

Thus the one-particle probability density function~PDF! is
,
l

f 5expF2~a11!2bS 1

2
v21F D2S b

2r 2
1g D l 2G .

~10!

In order to obtain the radial densityr(r ), we have to inte-
gratef over the other variables. To ensure that the integr
over v, l q , and l w converge, the following conditions ar
necessary:b.0 and b/2r 21g.0 at anyr. Therefore the
second condition is 2g/b.21/b2521. Using K
5exp@2(a11)#, we get

r~r !5E E f d3pdwdq

5E
0

2pE
0

p

KA2p

b

p sinq

b/2r 21g
exp~2bF!dwdq

5
K~2p!5/2

Ab
S b

2r 2
1g D 21

e2bF(r ). ~11!

The Poisson equation for the gravitational potential in
spherical coordinate system,

DF5
1

r 2

d

dr S r 2
dF

dr D54prV ,

wherer
V

is the volumetric mass density. In some cases, i
more convenient to use the linear~radial! density instead of
the volume density:

d

dr S r 2
dF

dr D5r~r !. ~12!

Note that becauseM51 the radial probability density func
tion and the linear mass density function are the same. In
ducing a new functionC5bF and employing Eq.~11! we
can rewrite Eq.~12! as

d

dr S r 2
dC

dr D5r~r !5K~2p!5/2AbS b

2r 2
1g D 21

e2C(r ),

obtaining a closed equation forC. This in turn can be sim-
plified by introducing constantsC andG,

d

dr S r 2
dC

dr D5CS 1

r 2
1G D 21

e2C(r ), ~13!

C5K~2p!5/2
2

Ab
.0, ~14!

G5
2g

b
.21.

This is the final form of the differential equation for th
scaled potential, which we will solve using numeric
methods. Finally, we can evaluateE, L2, and S in terms
of the Lagrange multipliers, the densityr(r ), and the poten-
tial F(r ). After integrating Eqs.~7!, ~6!, and ~4!, we
obtain
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S5a1
5

2
1bE

0

b

rFdr, ~15!

L25E
0

b

rS b

2r 2
1g D 21

dr, ~16!

E5
1

2b
1E

0

b

rS 1

b12gr 2
1

F

2 D dr. ~17!

B. Shell systems

In this section we consider the system of spherically sy
metric, infinitesimally thin, mass shells confined in a sph
with radiusb. We can define three basic types of the mo
with dimensions d52,3,4. The one-dimensional (d51)
nonrotating shell system is discussed in@15#. In the d52
case, every shell rotates about a fixed axis. Whend53, the
rotational axis of every shell is in a fixed plane, whiled
54 means that every shell can rotate about any arbit
axis. Therefore we used21 angles as coordinates. Let u
consider these systems in the mean field limit again us
units where M5G5b51. With the potential discusse
above @Eq. ~2!#, the Lagrangian and the Hamiltonian of
unit mass shell in a spherical coordinate system are, res
tively,

L5
1

2
ṙ 21

1

3
r 2(

k51

n

ẇk
22F~r !, ~18!

H5
1

2
v21

3

4

(
k51

n

l k
2

r 2
1F~r !, ~19!

wherewk(k51,2,3) are the angles aroundx, y, andz, the l k
are thex,y,z components of the angular momentum per u
mass, and we have used the fact that the moment of inert
a shell with unit mass is (2/3)r 2. In the equations above, w
use n5d21, which is the number of degrees of freedo
coming only from rotation. This is a generalization of th
previous model, and so is the method to find the equilibri
PDF f (x,p). As in the previous section, in order to get th
equilibrium solutions first we have to find the extremum
the entropy:

S52E E f ln f dn11xdn11p ~20!

with respect to the three constraints of normalization,E, and
L2:

15E E f dn11xdn11p,

L25E E f S (
k51

n

l k
2D dn11xdn11p, ~21!
-
e
l

ry

g

c-

t
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E5E E fS 1

2
v21

3

4

(
k51

n

l k
2

r 2
1

1

2
F~r !D dn11xdn11p.

~22!

The solution for the variational problem can be obtained e
ily, and the one-particle density function is now

f 5exp@2~a11!#expF2bS 1

2
v21F D G

3expF2S 3b

4r 2
1g D (

k51

n

l k
2G . ~23!

Therefore the radial mass density function is

r~r !5E E f dn11pdnw

5K~2p!(2n11)/2
pn/2

Ab
S 3b

4r 2
1g D 2n/2

exp~2bF!.

~24!

From the Poisson equation, again usingC5bF, we find

d

dr S r 2
dC

dr D5K~2p!(2n11)/2pn/2Ab

3S 3b

4r 2
1g D 2n/2

exp~2C!, ~25!

which can be simplified to

d

dr S r 2
dC

dr D5CS 1

r 2
1G D 2n/2

e2C(r ), ~26!

C5
2(4n11)/2

~3b!n/2
p (3n11)/2KAb.0, ~27!

G5
4g

3b
.21. ~28!

Comparing the results~26! for the three-dimensiona
shell system (n52) to that of a three-dimensional poin
mass system~13!, we can see that these two systems
equivalent in so far as Eqs.~13! and ~26! have the same
form.

It is useful to evaluateS,L2, and E in terms of the
Lagrange multipliers,r(r ), and F(r ). The integration of
Eqs.~20!, ~21!, and~22! yields

S5a1
n13

2
1bE

0

b

rFdr, ~29!

L25
n

2E0

b

rS 3b

4r 2
1g D 21

dr, ~30!
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E5
1

2b
1E

0

b

rS 3n

8

1

~3/4! b1gr 2
1

F

2 D dr. ~31!

III. T-g ENSEMBLE

In the previous sections we derived expressions for
entropy extremum solutions for our model systems in ter
of the local radial density. A third Lagrange multiplierg was
introduced to satisfy the extra constraint onL2. Thus speci-
fying E andL2 ~and, of course,M ) defines the analog to th
microcanonical ensemble for these systems. Alternativ
by fixing b andg, we can define the analog of the canonic
ensemble, in whichE andL2 are not fixed, but their averag
is determined byb and g, whereg5]S/]L2. We call this
the T-g ensemble. It can be modeled by imagining that
system is in contact with a heat bath with constantb and also
an l 2 bath at constantg. The l 2 bath corresponds to the fac
that we allow somel 2 exchange between the system and
bath. Since the system is spherically symmetric in positi
while the system can also exchange angular momentum
the bath, its vector average will vanish. As an example,
can imagine a globular cluster that is embedded in so
large spherically symmetric stellar neighborhood with an i
tropic velocity distribution. The mean angular momentum
both system and bath is zero, and onlyl 2 and energy ex-
change can occur~for the moment, we do not take into ac
count the possibility that particles can escape from the c
ter!.

In performing calculations it is more convenient to use
T-g ensemble than theE-L2 microcanonical ensemble be
cause in the latter we have to find the Lagrange multipli
from the givenE and L2. As can be seen from Eqs.~15!,
~16!, and~17! this is a nontrivial and laborious task. In th
ensemble the relevant thermodynamic potential is an ex
sion of the Helmholz free energy,

F5E2
1

b
S1

g

b
L2 , ~32!

and equilibrium states, if they exist, minimizeF.

IV. STABILITY

From the variational problem, we only know the extr
mum solutions. In order to separate the unstable solut
from the locally stable, we use the modified method
Poincare´’s linear series of equilibria. Following Katz@6,7#
we can generalize the method to the case of a functio
From now on, we discuss the generalized version of
method which has to be applied to our models to determ
whether an extremum solution is stable or unstable. We
line the method below. Let us assume that we want to fi
the maximum of the functionalF* ( f ,s) which depends para
metrically ons. The functionf :V→R, whereV is a compact
domainVPR3, and the local maximum of the functional
the stable solution. Suppose we partitionV and consider the
vectorxPRn with elementsxi5 f (yi) (yiPV is not a coor-
dinate but an indexed element inV). Instead of dealing with
the functionalF* , we can construct a functionF:Rn→R
such thatF(x,s)'F* ( f ,s). The accuracy can be controlle
e
s

y,
l

e

e
,

ith
e
e
-
f

s-

e

s

n-

ns
f

l.
e
e
t-
d

by refining the partition~increasingn). The problem is then
shifted to finding the extrema ofF:

] iF~x,s!50. ~33!

Denote the extremum solutions of the problem byx
5$Xa(s)% wherea,b51, . . . ,N labels different extremal so
lutions. Assume that the first and second derivatives ofF are
continuous inx ands, andẊa is continuous as well. Assum
also that the matrix (2] i] jF)a has a nondegenerate eige
value spectrum, which we may consider to be order
k1a(s),k2a(s),•••,kna(s),•••, and further that
(2] i] jF)a is diagonal.~We can always transform it into tha
form.! Let us evaluateF at the extremum pointsx5Xa(s)
where

] iF~Xa ,s!50. ~34!

Then, as the parameters is varied, on the extremum labele
a,

05
d

ds
] iF~Xa ,s!

5~]s] iF !a1(
j 51

`

~] j] iF !aẊa
j

5~]s] iF !a2kia~s!Ẋa
i , ~35!

Ẋa
i 5

~]s] iF !a

kia~s!
. ~36!

The stability of the extremum is determined by the seco
derivative ofFa(s)5F(Xa ,s),

F̈a5~]s
2F !a1(

i 51

n

~] i]sF !aẊa
i 5~]s

2F !a1(
i 51

`
~]s] iF !a

2

kia
.

~37!

The stability will change only when one of thekia changes
sign, and a change in stability occurs only at bifurcati
or limit points @6,7#. Therefore we have to investigat
the dependence ofF̈a on s in order to decide how the stabil
ity changes at ana-b bifurcation or limit point. If we look at
Eq. ~37!, we can see that, when a particularkia(s) changes
sign from positive to negative, at that point lims→s0

F̈a

51` and similarly, from the otherb branch, lims→s0
F̈b

52`.
Going back to our original problem, we have to apply t

method to our model systems in both theE-L2 and T-g
ensembles. The only difficulty is that the method discus
above allows us to include only systems with one cont
parameters. In our case, we are free to fix eitherE or L2 in
the E-L2 ensemble andb or g in the T-g ensemble and
regard the other as the control parameter. Afterwards, we
change the previously fixed parameter and apply the met
again for a wide range of parameter sets. In theE-L2 en-
semble a natural choice of parameter isE with one fixed
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value ofL2, as the entropy has to be a local maximum if t
system is in a locally stable state. If we are at the extrem
solution points,

Ṡ5
dS

dE
5

]S

]E
5b. ~38!

For a different value ofL2, we can clearly see which
branch of the extremum solutions is unstable. To obtai
complete description we can use the same method ifE is
fixed:

Ṡ5
dS

dL2
5

]S

]L2
5g. ~39!

In the T-g ensemble, first consider the case where we fixg,
and we are looking for the maximum of the functiona
2bF. On a branch of the extremum solutions,

dF

db
5

]E

]b
1

S

b2
2

1

b

]S

]E

]E

]b
2

1

b

]S

]L2

]L2

]b
2

g

b2
L21

g

b

]L2

]b
.

~40!

Using ]S/]E5b and]S/]L25g, we easily find

dF

db
5

S

b2
2

g

b2
L2 ,2

d~bF !

db
52S F1b

dF

db D52E.

~41!

If we construct the stable branches for several values og,
we can build up a general picture of the stability of the e
tremum solutions. We can apply the method for the case
fixed b as well. The extremum solutions are stable whe
2bF is maximum:

dF

dg
5

]E

]g
2

1

b

]S

]E

]E

]g
2

1

b

]S

]L2

]L2

]g
1

1

b
L21

g

b

]L2

]g
,

~42!

dF

dg
5

1

b
L2 ,

2
d~bF !

dg
52L2 . ~43!

From the results derived above we have a tool to sepa
the unstable solutions that is easy to apply. In the micro
nonical (E-L2) description, we have to inspect the extremu
solutions in theb-E plane for several fixed values ofL2 or
in the g-L2 plane for several fixed values ofE. However,
in the T-g ensemble, we have to inspect the extrem
solutions in the (2E)-b plane for fixedg values, or we
have to consider the extremum solutions in the (2L2)-g
plane for the case of fixedb. Either way, as we will
show below, we can generalize the approach to two par
eters.

V. NUMERICAL METHOD

In order to find the entropy extremum solutions for t
systems above, we have to solve Eq.~13! or ~26!, for the
m

a

-
a

te
a-

-

three-dimensional point mass system, or the three type
shell system. Generally, all of the differential equations c
be written in the form

dy

dr
5CS 1

r 2
1G D 2n/2

e2C(r ), ~44!

dC

dr
5

y

r 2
,

whereC5bF andn5d21 ~as above,d is the dimension of
the system!. Of course, the parametersG.21 andC.0 are
different case by case. But it is quite interesting to ment
that these systems behave similarly, regardless of whe
we deal with a point mass system or a shell system, as l
as the dimensions are the same. This is no longer a surp
if we look back at the Hamiltonians. But the similarity doe
also mean that, for example, a three-dimensional point m
system is equivalent to a three-dimensional shell system
far as the one-particle density function and the stability
solutions are concerned. Also, another advantage of
analogy is that we can dynamically model a thre
dimensional point mass system with a three-dimensio
shell system. Both systems should show the same equ
rium properties in the mean field limit. Of course, we have
reassign the moment of inertia of a shell to a different va
in order to getexactlythe same Hamiltonian in both cases

The above system of equations should be solved with
following boundary conditions:

y~0!50, ~45!

C~1!52b.

Unfortunately, there are two things that make finding t
solutions more difficult. First, Eq.~44! has a singularity at
r 50 and, secondly, the existence and uniqueness of the
lution are questionable for any givenC, b, andG. We cannot
simply setC andG to satisfy our constraints of specifiedE
andL2 because we do not have explicit forms ofE andL2 in
terms ofC andG: the constraints are functionals ofr andF.
To eliminate this problem we can change our bound
condition problem to an initial value problem because,
the latter case, we can ensure the existence and unique
of our solution for anyC.0 and G.21. Therefore we
choose

y~0!50, ~46!

C~0!5C0 ,

where C0P(2`,1`), and we are able to construct th
solution aroundr 50 in the form of a power series ofC and
y. From the numerical point of view, we should tak
the power series ofC and y in r 1 ~a sufficiently small
radius aroundr 50), and then continue the integration o
Eq. ~44! numerically from that point with the new initia
values

y~r 1!5y01, ~47!

C~r 1!5C01.
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Although the solution we get from Eq.~46! is unique, it does
not satisfy both Eq.~45! and normalization. Looking at Eq
~44!, we can see that we get all physical solutions with o
one fixedC5C0 for the initial value problem, since chang
ing the value ofC is equivalent to shifting the solution,C,
by a constant. Therefore we can find all of the physica
relevant solutions by fixing the value ofC and varyingC0
and G. We also have to notice that, since we useC5bF,
from the Poisson equation, the rhs of Eq.~44! is normalized
to b, so we can get the inverse temperature by integra
Eq. ~44!, which is simply y~1!. In practice, we used the
Bulirsch-Stoer method@22# to integrate the coupled, nonlin
ear, differential equations fromy1 and Bode’s five-point
method@22# to evaluate integrals. Relative errors were co
trolled to within 10212.

VI. NUMERICAL RESULTS

In Fig. 1 we show plots ofb vs C0 for the allowed ex-
tremal solutions corresponding to five particular values ofG.
The numerical results for the other models are qualitativ

FIG. 1. The extremal solution curves at different values ofG
52g/b ~from the top to the bottomG520.9,20.5,0,2,5.) Note
that each curve has an upper boundbc(G), and no extrema can b
found with b.bc(G). Also note that over a certain range ofb
multiple solutions are present. However, of those multi
solutions, only those are stable that have the highest value
C0 ~see Fig. 2 below!. The asymptotic cases areC0→2` @b
→b0 andrV(r )}1/r 2# andC0→`, which is the high temperature
limit.

FIG. 2. The extremal solutions forG520.74. Forb52.7, three
extremum solutions are present, but only the one with the lar
C0 is stable. For comparison, also see Fig. 8 below.
y

y

g

-

y

very similar, so we will use the point mass system to de
onstrate their general features. As we can see, the solu
are bounded and, as a comparison, the results for the fam
isothermal sphere model (G50) @21,8# are presented a
well. Examination of Fig. 1 clearly demonstrates the ex
tence of an upper boundbc(G), which means that below a
critical temperature there is no extremum solution at fixedG.
In fact, this can be proved rigorously from the differenti
equations@23#. We can also see from the graph thatḃc
5dbc /dG,0 and that, whenb→b05 limC0→2`b(C0),
the number of solutions goes to infinity.

In Fig. 2 we show that three solutions occur for a partic
lar value ofb ~52.7!. At this point we do notknow which of
them, if any, are stable. In Fig. 3 we plot the volume dens
profiles of these solutions normalized to the central dens
As we can see, solutions represented by smallerC0 are more
and more concentrated at the center. As a comparison
also give the density profiles of the well known isotherm
sphere (G50). There is some difference in the shape of t
density profiles in the case whereGÞ0 but, in general, the
volume density profile is singular asC0→2`, and has the
asymptotic solutionrV51/4pr 2. Note that the linear density
is r51 in this asymptotic case. In order to see the differen
between density profiles of the isothermal sphere (G50) and

of

st

FIG. 3. The relative volume density profiles of the three e
tremal solutions in the case of the isothermal sphere (G50,b52).
Only the least concentrated solution, which has the highest valu
C0, is stable. The lower the value ofC0, the more condensed an
unstable the solutions become. The unstable solutions are ch
terized by a pronounced core-halo structure.

FIG. 4. In order to show the effect that a nonzero value ofg has
on the density, we plot the relative volume mass density profile
the locally stable high temperature asymptotic solutions (C0→`)
at different values ofG ~from the top to the bottom,G5
20.5,0,2,5). While the isothermal sphere has a constant densi
this limit, nevertheless the models withGÞ0 have different behav-
ior due to the nonzerog.



u
e
ld

e
e
th

m
-
e
i-
ha
q
ill

s
r
a
or
a-
s
it
se
e

is

te

i
y

e

u

e. In
t
.

ical

. 8

al

-

a
by

lt of
lu-
est

nic
ion.
by

a

-

l.

sent
of

e

-
eg-

5790 PRE 62PETER J. KLINKO AND BRUCE N. MILLER
the others, we plot the high temperature solutions~Fig. 4!.
These are theC0→` asymptotic solutions whereb→0. If
G.0 the relative volume density profiles curve down, b
whenG,0 the profiles curve up, indicating that, if we hav
an l 2 reservoir, at higher radius the density profile shou
change from the homogeneous density profile.

In order to show how theL2 constraint affects the shap
of the density profiles, in Fig. 4 we plot the relative volum
density profiles for a high temperature. As we can see in
figure, whenGÞ0 the density profiles are no longer unifor
and, depending on the sign ofG, the density is either increas
ing (G,0) or decreasing (G.0), while in the standard cas
(G50) in the limit of high temperature the density is un
form. We can understand this behavior if we recognize t
in the limit b→0 gravity can be neglected. Consider E
~10! whengÞ0. Since the kinetic energy contribution is st
Maxwellian, the probability of finding a particle with largel
is smaller whenG.0(g.0), which means fewer particle
will occupy larger radii. From the physical point of view, fo
a relatively largeL2, more particles should concentrate
larger radii in order to maintain the large value, while, f
relatively smallL2 , fewer particles should settle at large r
dii in order to balance the centrifugal forces. For the ca
where G,0 the situation is the opposite, and the dens
profile should increase with increasing radius. Of cour
while we cannot use this argument for finite temperatur
the origin of the difference in the density profiles whenG
Þ0 is this effect. At finite temperature the tendency pers
but the behavior is not guaranteed.

In Figs. 5 and 6, the stability properties are presen
according to the previously discussed Poincare´ linear series
of equilibria with fixedL2 andE in the E-L2 ensemble. As
we can see, the gravothermal catastrophe holds for theE-L2
ensemble as well. In Fig. 5, below a critical energy there
no extremal solution~here the radius is fixed, not the energ
as in @4#!. Also, at the same point,ḃa(Ec)5` jumps to
ḃb(Ec)52`. ~We follow the spiral in the counterclockwis
direction.! Thus only the first branch,a, the upper envelope
of Fig. 5, is stable. The other branches are increasingly

FIG. 5. Theb vs E plot of the extremum solutions whenL2

50.25 (E-L2 ensemble!. As seen, there are no solutions below
critical value of the energyEc(L2), and multiple solutions are
present for a certain range ofE. Based on the stability investiga
tions, only the upper envelope of the complete spiraling curveG
Þ0 represents the stable solutions. Other pieces are unstable~more
eigenvalues become negative! as we go to the center of the spira
For comparison, see Fig. 7 below.
t
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stable because additional eigenvalues become negativ
the opposite case, when we fixE ~Fig. 6!, we can see tha
above a critical value ofL2 there is no extremum solution
The corresponding functionsS(E) andS(L2) are plotted in
Fig. 7. We see that the entropy is monotonic above a crit
energy in the stable region of the extremal solutions.

For theT-g ensemble, the results are presented in Figs
and 9. First of all, in the case of fixedg, we have to take a
close look at the solutions in the (2E)-b graph. Only the
first branch of the solutions is locally stable up to a critic
value ofb, saybc , because (2Ė)a(bc)5`, and there is no
extremum forb.bc . For giveng,0, the existence condi
tion now readsb.2ugu, inducing a positive lower bound on
b. As a comparison, we selected the value ofG in Fig. 2
corresponding to Fig. 8; as we wind along the curve to
particularb value, the extremum solutions are represented
a more concentrated set of density profiles. Another resu
the stability investigations is that in Fig. 1, only those so
tions are locally stable which are to the right of the larg
maximum of theb(C0) curves. The corresponding2F can
be seen in Fig. 10. In the stable region, it is a monoto
function, and therefore there is no sign of a phase transit
The same holds in theE-L2 ensemble as can be seen

FIG. 6. Theg vs L2 plot of the extremum solutions whenE5
20.3 (E-L2 ensemble!. Above a critical value ofL2, there are no
extrema. In this case, the gravothermal catastrophe is also pre
according to the stability investigations, and only the first piece
the spiraling curve that starts atL250 and ends at the critical valu
of L2 defined above represents the stable solutions.

FIG. 7. The entropy vs energy curve for the case ofL250.25
(E-L2 ensemble!. ~Also see Fig. 5.! The stable branch of the solu
tions in Fig. 5 can be identified as the highest entropy curve s
ment in theS vs E plot, which exactly ends atEc . Note that this
segment is also a monotonic function ofE, which means no phase
transition is present in the system.
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inspecting the entropy curves in Fig. 7. The results for fix
b are shown in Fig. 9. The stable region of extremum so
tions becomes unstable atgc and atg.gc there are no ex-
trema. The free energy behaves similarly to the case of fi
g: it is monotonic and there is no phase transition.

VII. CONCLUSION

The main purpose of this work is to study the equilibriu
thermodynamics of spherically symmetric self-gravitati
systems in the mean field limit. We investigated both
spherically symmetric point mass system and shell syst
of differing dimension confined in a sphere. These syste
are related to each other both in the form of their Ham
tonian and their equilibrium states. Furthermore, thethree-
dimensional shell system has the interesting and potent
useful property that, with regard to the equilibrium dens

FIG. 9. The (2L2) vs g plot of the extremum solutions atb
52 (T-g ensemble!. There are no extrema above the critical val
gc(b) and only the first branch of the extrema is stable. The cu
segment that represents the stable solutions starts atg521 and
ends atgc . In other words, the gravothermal catastrophe is pres

FIG. 8. The (2E) vs b plot of the extremum solutions in th
T-g ensemble atg521. There are no extrema above the critic
bc(g), and only the first branch of the extrema are stable. T
piece of the spiraling curve which represents the stable solut
starts atb52 and ends atbc ~gravothermal catastrophe in theT-g
ensemble!. From Fig. 2, we can clearly see that only the least c
densed density profiles represent the stable solutions. For com
son, see Fig. 10 below.
d
-

d

e
s
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-

lly

profile, it is equivalent to the spherically symmetric poi
mass system. Our description is more general than the s
dard treatment of the isothermal sphere@21# since, in addi-
tion to the energy, we take into accountL2, the sum of the
squares of the individual angular momenta, which is co
served in the mean field limit for spherically symmetric sy
tems. In this type of microcanonical description (E-L2 en-
semble! we evaluated the ‘‘equilibrium’’ one-particle
probability density function for each type of system by fin
ing the extrema of the entropy. The resulting PDF’s turn
out to be similar to Eddington’s anisotropic density functi
@16#. Therefore the density profiles obtained here also dif
from those of the isothermal sphere which, in our formu
tion, is the special caseg50. Near the system center, th
density profiles are similar to those of the isothermal sphe
However, as the outer boundary is approached, dependin
the value ofG, deviations can become large, increasing
decreasing depending on the sign ofG. The physics behind
this behavior is simple: if the system is spun up correspo
ing to negativeG, the outer density increases. If, on the oth
hand, the radial kinetic energy dominates the rotational
ergy,G•.0 and the outer density decreases.

In addition to the microcanonical ensemble, the Lagran
multiplier g, which arose from the constraint onL2 , yielded
a canonical ensemble (T-g) that corresponds to the syste
being embedded in a heat bath at temperatureT and anl 2

reservoir atg. But this analogy is correct only if the system
is, at least, in a local equilibrium state, and this issue de
onstrates the importance of checking the stability proper
of the extremum solutions. The method known as Poinca´’s
linear series of equilibria proved adequate to analyze the
bility of the extremum solution in both ensembles with
little extra effort. Using it, we showed that only certain typ
of solutions are locally stable, and others are saddle po
In other words, the gravothermal catastrophe is also pre
in both theE-L2 andT-g ensembles, which means that the
is no phase transition in our spherical mean-field mod
although one was expected to be present because of thL2
constraint.

e

t.

FIG. 10. (2F) vs b plot at fixedg521, whereF is the ther-
modynamic potential in theT-g ensemble. From Fig. 8, we ca
clearly identify which piece of the curve represents the stable s
tions; it is the first piece, starting atb52 and ending atbc . There
is no sign of a phase transition because in the stable re
2F(b) is monotonic. Note that the stable solutions have the m
mal F.
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From their description of the gravothermal catastroph
is easy to imagine that Lynden-Bell and Wood@4# had in
mind a dynamical process in which mass was transfe
from the halo to a concentrated central core. However, t
approach was confined to a comparison of stationary sta
Hints of collapse have been seen in someN-particle simula-
tions @24#. In future work we plan to study the comple
dynamics of the collapse, both analytically and using d
namical simulation ofN-particle andN-shell systems. The
.

it

d
ir
s.

-

shell systems should prove especially useful since they a
the complication arising from the formation of tight binarie
@2#.
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